SparkSql系列(10/25) 数据类型

2,041次阅读
没有评论

共计 3242 个字符,预计需要花费 9 分钟才能阅读完成。

Spark Schema 定义了 DataFrame 的数据类型,你可以通过调用 printSchema方法来打印相应的Schema。默认的情况下 Spark 会自动推导获取的数据对应的数据类型。

1. Schema

在介绍 Dtype 的时候我们就已经提到了 StructType,接下来我们主要使用这个来构建 Schema,说白了Schema就是提前定义好数据类型,然后获取数据填充就好了。

2. StructType & StructField 构建 Schema

StructType & StructField case class 代码定义如下:

case class StructType(fields: Array[StructField])

case class StructField(
    name: String,
    dataType: DataType,
    nullable: Boolean = true,
    metadata: Metadata = Metadata.empty)

下文是个简单的例子来说明使用的StructType 来构建对应的DataFrame 的Schema。

import org.apache.spark.sql.types.{IntegerType,StringType,StructType,StructField}
import org.apache.spark.sql.{Row, SparkSession}

val simpleData = Seq(Row("James","","Smith","36636","M",3000),
    Row("Michael","Rose","","40288","M",4000),
    Row("Robert","","Williams","42114","M",4000),
    Row("Maria","Anne","Jones","39192","F",4000),
    Row("Jen","Mary","Brown","","F",-1)
  )

val simpleSchema = StructType(Array(
    StructField("firstname",StringType,true),
    StructField("middlename",StringType,true),
    StructField("lastname",StringType,true),
    StructField("id", StringType, true),
    StructField("gender", StringType, true),
    StructField("salary", IntegerType, true)
  ))

val df = spark.createDataFrame(
     spark.sparkContext.parallelize(simpleData),simpleSchema)

3. printSchema 打印 Schema

直接调用 DataFrame 相应的内置方法 printSchema ,输出对应的Schema,在spark shell 中会以树层级结构的方式来展示。

df.printSchema()
df.show()

下面就是打印输出的效果。

root
 |-- firstname: string (nullable = true)
 |-- middlename: string (nullable = true)
 |-- lastname: string (nullable = true)
 |-- id: string (nullable = true)
 |-- gender: string (nullable = true)
 |-- salary: integer (nullable = true)

+---------+----------+--------+-----+------+------+
|firstname|middlename|lastname|   id|gender|salary|
+---------+----------+--------+-----+------+------+
|    James|          |   Smith|36636|     M|  3000|
|  Michael|      Rose|        |40288|     M|  4000|
|   Robert|          |Williams|42114|     M|  4000|
|    Maria|      Anne|   Jones|39192|     F|  4000|
|      Jen|      Mary|   Brown|     |     F|    -1|
+---------+----------+--------+-----+------+------+

4. 构建嵌套 Struct

在实际的业务实践过程中,经常会使用到嵌套的 Struct

下面的例子就是拿 name 来举例来说明,每个人有 firstname middlename lastname

val structureData = Seq(
    Row(Row("James","","Smith"),"36636","M",3100),
    Row(Row("Michael","Rose",""),"40288","M",4300),
    Row(Row("Robert","","Williams"),"42114","M",1400),
    Row(Row("Maria","Anne","Jones"),"39192","F",5500),
    Row(Row("Jen","Mary","Brown"),"","F",-1)
)

val structureSchema = new StructType()
    .add("name",new StructType()
      .add("firstname",StringType)
      .add("middlename",StringType)
      .add("lastname",StringType))
    .add("id",StringType)
    .add("gender",StringType)
    .add("salary",IntegerType)

val df2 = spark.createDataFrame(
    spark.sparkContext.parallelize(structureData),structureSchema)
df2.printSchema()
df2.show()

打印相应的 Schema 可以看到对应的嵌套效果。

root
 |-- name: struct (nullable = true)
 |    |-- firstname: string (nullable = true)
 |    |-- middlename: string (nullable = true)
 |    |-- lastname: string (nullable = true)
 |-- id: string (nullable = true)
 |-- gender: string (nullable = true)
 |-- salary: integer (nullable = true)

+--------------------+-----+------+------+
|                name|   id|gender|salary|
+--------------------+-----+------+------+
|    [James, , Smith]|36636|     M|  3100|
|   [Michael, Rose, ]|40288|     M|  4300|
| [Robert, , Willi...|42114|     M|  1400|
| [Maria, Anne, Jo...|39192|     F|  5500|
|  [Jen, Mary, Brown]|     |     F|    -1|
+--------------------+-----+------+------+

5. 检查 Field

当 DataFrame 中的列多了之后,你不可能一个一个去检查是否包含指定的列,所以你需要去判断它是否在其中,可以通过以下方法来实现。

println(df.schema.fieldNames.contains("firstname"))
println(df.schema.contains(StructField("firstname",StringType,true)))
正文完
请博主喝杯咖啡吧!
post-qrcode
 
admin
版权声明:本站原创文章,由 admin 2021-08-29发表,共计3242字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
评论(没有评论)
验证码