共计 1341 个字符,预计需要花费 4 分钟才能阅读完成。
case when 这种用法基本上每一类编程语言里都会有,scala 里面常见的就是 case 语法,也就是条件判断,可以想想一大堆不同条件下执行不同的语句。
首先创建一个 dataframe
import org.apache.spark.sql.functions.{when, _}
val spark: SparkSession = SparkSession.builder()
.master("local[1]")
.appName("SparkByExamples.com")
.getOrCreate()
import spark.sqlContext.implicits._
val data = List(("James","","Smith","36636","M",60000),
("Michael","Rose","","40288","M",70000),
("Robert","","Williams","42114","",400000),
("Maria","Anne","Jones","39192","F",500000),
("Jen","Mary","Brown","","F",0))
val cols = Seq("first_name","middle_name","last_name","dob","gender","salary")
val df = spark.createDataFrame(data).toDF(cols:_*)
when otherwise
val df2 = df.withColumn("new_gender", when(col("gender") === "M","Male")
.when(col("gender") === "F","Female")
.otherwise("Unknown"))
上面这个例子就是新建一个列,when 判断了两次,当然也可以直接写个udf 搞定,udf是万能的。但是你也要写函数,然后注册,也挺累的。
case when
val df3 = df.withColumn("new_gender",
expr("case when gender = 'M' then 'Male' " +
"when gender = 'F' then 'Female' " +
"else 'Unknown' end"))
或者
val df4 = df.select(col("*"),
expr("case when gender = 'M' then 'Male' " +
"when gender = 'F' then 'Female' " +
"else 'Unknown' end").alias("new_gender"))
&& and || 算子
上面这两个算子就是与和或,可以实现复合条件的判断
val dataDF = Seq(
(66, "a", "4"), (67, "a", "0"), (70, "b", "4"), (71, "d", "4"
)).toDF("id", "code", "amt")
dataDF.withColumn("new_column",
when(col("code") === "a" || col("code") === "d", "A")
.when(col("code") === "b" && col("amt") === "4", "B")
.otherwise("A1"))
.show()
正文完
请博主喝杯咖啡吧!